
International Journal of Theoretical Physics, Vol. 29, No. 4, 1990 

Covariant, Algebraic, and Operator Spinors 

V. L. Figueiredo, 1 E. Capelas de Oliveira, t~ 
and W. A. Rodrigues, Jr. 1 

Received June 30, 1989 

We deal with three different definitions for spinors: (I) the covariant definition, 
where a particular kind of covariant spinor (c-spinor) is a set of complex variables 
defined by its transformations under a particular spin group; (II) the ideal 
definition, where a particular kind of algebraic spinor (e-spinor) is defined as 
an element of a lateral ideal defined by the idempotent e in an appropriated 
real Clifford algebra Rp.q (when e is primitive we write a-spinor instead of 
e-spinor); (III) the operator definition where a particular kind of operator spinor 
(o-spinor) is a Clifford number in an appropriate Clifford algebra •p,q determin- 
ing a set of tensors by bilinear mappings. By introducing the concept of"spinorial 
metric" in the space of minimal ideals of a-spinors, we prove that for p + q -< 5 
there exists an equivalence from the group-theoretic point of view among 
covariant and algebraic spinors. We also study in which sense o-spinors are 
equivalent to c-spinors. Our approfich contain the following important physical 
cases: Pauli, Dirac, Majorana, dotted, and undotted two-component spinors 
(Weyl spinors). Moreover, the explicit representation of these c-spinors as 
a-spinors permits us to obtain a new approach for the spinor structure of 
space-time and to represent Dirac and Maxwell equations in the Clifford and 
spin-Clifford bundles over space-time. 

1. I N T R O D U C T I O N  

Three  essen t i a l ly  d i f fe rent  de f in i t ions  o f  s p ino r s  a p p e a r  in  the  l i te ra ture .  

(I)  The  r  de f in i t i on  ( C a r t a n ,  1966; B r a u e r  a n d  Weyl ,  1935), 

whe re  a p a r t i c u l a r  k i n d  o f  c o v a r i a n t  s p i n o r  ( c - sp ino r )  is a set o f  c o m p l e x  
va r i ab le s  de f ined  by  its t r a n s f o r m a t i o n s  u n d e r  a p a r t i c u l a r  sp in  g roup .  

( I I )  The  idea l  d e f i n i t i o n  (Cheva l l ey ,  1954; Riez,  1958; Gra f ,  1978), 
whe re  a p a r t i c u l a r  k i n d  o f  a n  a lgeb ra i c  s p i n o r  ( e - s p i n o r )  is a n  e l e m e n t  o f  
a l a te ra l  idea l  (de f ined  b y  the  i d e m p o t e n t  e) in  a n  a p p r o p r i a t e  Cl i f ford  
a lgebra .  ( W h e n  e is p r i m i t i v e  i d e m p o t e n t  we wri te  a - s p i n o r  i n s t ead  o f  
e - sp ino r . )  
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(III) The operator definition (Hestenes and Sobezyk, 1984), where a 
particular kind of operator spinor (o-spinor) is a Clifford number in an 
appropriate Clifford algebra Rp, q determining a set of tensors by bilinear 
mappings (see Section 2 for notation). 

The so-called pure spinors recently used by Caianiello (1988) and 
Budinich and Trautman (1986) are special cases of c-spinors (or e-spinors) 
and will not be analyzed in this paper. From the point of view of this paper 
they are not as fundamental as is usually thought. 

The usual presentation of e-spinors as elements of lateral ideals in 
Clifford algebras (Chevalley, 1954; Hestenes and Sobezyk, 1984; Graf, 1978) 
as well as the introduction in this context of the groups Spin+(p, q)  do not 
leave clear the relation among these objects and the c-spinors and the 
universal covering groups of some groups SO+(p,  q)  used in theoretical 
physics. The same is true in relation to o-spinors. 

The main purpose of the present paper is to clear up the situation, and 
in the process we obtain very interesting results. In particular, we prove 
that all the c-spinors used by physicists can be represented by appropriate 
e-spinors. From the explicit construction of the e-spinors (representing 
c-spinors) by the "idempotent method" (Section 2.3), we see that these 
objects are nothing more than the sum of multivectors (or multiforms). 

This result reveals the hidden geometrical nature of spinors. It shows 
that, contrary to usual claims (Budinich and Trautman, 1986; Crumeyrolle, 
1969, 1971; Bugajska, 1979; Penrose and Rindler, 1984), spinors are not 
more fundamental than tensors. Also, it shows the limited validity of the 
geometrical interpretations already proposed in the literature (Bugajska, 
1979; Penrose and Rindler, 1984; Hestenes, 1967, 1971a, b, 1975; Lounesto, 
1986; Santal6, 1976) for Pauli c-spinors, Weyl c-spinors (i.e., two- 
component dotted and undotted c-spinors), Dirac c-spinors, and Majorana 
c-spinors. 

To formulate our problem, we start by recalling the kinds of c-spinors 
used by physicists. 

1.1. Pauli c-Spinors 

These are the vectors of a complex 2-dimensional space C e equipped 
with the spinorial metric 

~p: C~xC~c, /3,,(~,~,)=~*~, (1) 

( ) (Y') ~* ~ = Z1 , • = , zl, yi 6 C,  i=1 ,2 ,  ---~(ZI,Z2) 
\ z2 /  Y2 

where in this text ~ always means the complex conjugate of z ~ C. 
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The spinorial metric is invariant under the action of  the group SU(2),  
i.e., if u ~ SU(2),  then /3p(u~0, u~)=/3p(0,  ~)- As it is well known, Pauli 
c-spinors carry the fundamental (irreducible) representation D ~/2 of SU(2)  
(Miller, 1972; Landau and Lifschitz, 1971). 

1.2. Weyl c-Spinors 

These objects were introduced by Weyl (1929) and called by van der 
Waerden (1932) undotted and dotted two-component spinors. We have the 
following definitions. 

1.2.1. Contravariant Undotted Spinors 

These are the elements of  a complex 2-dimensional space C 2 equipped 
with the spinorial metric 

\ /3: C2xC2- ,  C; /3(n, z i ) = n ' C ~  

n = ( 9 '  C=(_~ : )  

(2) 

The spinorial metric /3 is invariant under the action of the group 
SL(2, C), i.e., if ~7 ~-~ roT, ~--~ u~:, then 

/3(% ~) =/3(m?, u~) ~ u tCu = C ,~-~ u c SL(2,  C) (3) 

1.2.2. Covariant Undotted Spinors 
A 

These are the elements of  the dual space C 2 defined by 

A 
c ~ ~ ~: c ~--, c; ~(r = "  ~7~: =/3(% ~:) (4) 

It follows that 

~= ntC= (n,, n2) = (n 2,-~') (5) 
The transformation law of the covariant undotted spinors that leaves 

the spinorial metric invariant under SL(2, C) is then 

A --1 
~-~ rlu , u c SL(2,  C) (6) 

1.2.3. Contravariant Dot ted  Spinors 

These are the elements of  the space C-= (C2) *, i.e., ~2~ ~j = (77 ~, ~ ) =  
(r ~2) = ~ , ,  r/~ C 2 equipped with the spinorial metric/3, 

/ 3 : C 2  x C=---> C, /3(r), ~) = OCt' (7) 
and we have that 

~(,~, r ~(,~u*, cu* ) . - , . *Cu * '  = c (8) 
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1.2.4. Covariant Dotted Spinors 

These are the element of  the dual space (~2, defined by 
A A A A 

~2~=~( . ,~ ) ;  ,~(~)-= ~ :  ~c~' (9) 
It follows that 

- c ~ ' =  ~ -= _~i = _~, (10) 

It is clear that the laws of transformations of the dotted spinors under 
the action of  SL(2, C) are 

A 1 A 
~ ~--> 7ju*; ~j--> (u*)-  ~j (11) 

The matrices u and (u*) -1 are the (nonequivalent) representations 
D (1/2 '~ and D (~ of SL(2, C). 

1.3. Dirac c-Spinors 

These are the vectors of a complex 4-dimensional space C 4 equipped 
with the spinorial metric (Landau and Lifschitz, 1971; Srivastrava, 1974) 

J~d: C4 X C4"~ C, fla=(thd,r 

where a Dirac c-spinor tha(r is defined as 

A A . q 2  
r  C2 = r ~ ~/d = ~ "]- ~ w ~i (12) 

In the canonical basis of C 4 the matrix B is the representation of/3d 
and we have 

~d(O~. ~ )  = ~(p(u)~ , .  p(u)r 

The transformation law of  the Dirac c-spinors is then 

[o 0] ~bd ~--~ (u , )_  1 ~Od (15) 

which means that Dirac c-spinors, as is well known, carry the Dr176 
D (~ o f  SL(2, C). 
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1.4. Standard Dirac c-Spinors 

If p(u) is a representation of  SL(2, C), then Sp(u)S -1, with SS -~= 
S-1S= 1 is also a representation. Under a similarity transformation the 
spinor Od ~ SqJd, which in general mixes the components of C 2 with those 

A 
of ~:2. A particular mixing is convenient in writing Dirac's equation. We 
define standard Dirac spinors as the objects dis such that 

where 

C4 9 ff/s = ( ~ )  (16) 

1 a 1 = ~  (~+,~); ;~ = ~  (~-,~) 

A A 
where sr C 2 and rj~ 62 and the sums in ~b and h are in the sense of sums 
of  complex numbers for each component. It is well known that ~Oa and ~Os 
are related by a unitary transformation (S -1 = S*) which leave unchanged 
the bilinear covariant constructed from ~ba and ~O* (Landau and Lifschitz, 
1971; Srivastrava, 1974). 

1.5. Outl ine of  This Work  

We now ask the main question to which this paper is addressed: to 
which Clifford algebras are the c-spinors described in Sections 1.1-1.4 to 
be associated? 

We are going to give an original answer to the above question by 
introducing a natural scalar product (see Section 3) in certain lateral ideals 
of  certain real Clifford algebras that "mimic" what has been described in 
Sections 1.1-1.4. To this end, in Section 2 we give the main properties of  
Clifford algebras over the reals (Chevalley, 1954; Riesz, 1958; Porteous, 
1981; Atiyah et al., 1964; Blaine Lawson and Michelsohn, 1983; Felzenswalb, 
1979; Coquereaux, 1982; Salingaros and Wene, 1985; Micali, 1986). The 
material presented fixes our notation and is the minimum necessary to 
permit the formulation of  our ideas in a rigorous way. We follow with minor 
modifications the notations of Porteous (1981). 

In Section 3 we define the a-spinors as elements of  minimal lateral 
ideals and the e-spinors are the elements of lateral ideals (not necessarily 
minimal) in real Clifford algebras. The a-spinors or e-spinors of  each one 
of  the Clifford algebras studied in this paper has a natural right F-linear 
space structure over one of the fields F = R or C, or H, respectively the real, 
complex, and quaterniom fields (Section 2). 
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We introduce for each a-spinor space I = Rp, qe a natural scalar product 
(spinorial metric), i.e., a nondegenerate bilinear mapping F: I x I --> F, where 
F is the natural scalar field associated with the vector structure of I c Rp, q. 

Our approach to the natural scalar product shows for p + q-< 5 the 
groups Spin+(p, q) are the groups that leave the spinorial metric invariant. 
Thus, our approach to the scalar product is different from the one discussed 
by Lounesto (1981) and, as we shall see, offers a solution for the main 
question formulated above. 

In Section 4 we analyze in detail the special cases SU(2) -~ Spin(3, O) 
and SL(2, C)-~ Spin+(1, 3) and identify respectively the ideals that contain 
the objects corresponding to Pauli c-spinors in R3,o and the Weyl c-spinors 
and Dirac c-spinors in ~,3 (the space-time algebra) and R3,~ (the Majorana 
algebra). Our identifications are all based on explicit proofs that the rep- 
resentative space of a-spinors (or e-spinors) of each one of the c-spinors 
mentioned above carries the correct representation of the corresponding 
spin group (according to the theory of group representation). We show also 
that the original Dirac algebra C(4) must be identified for physical reasons 
with the real Clifford algebra R4,1. 

Now, it is well known that physical theories use spinor fields. Indeed, 
there are theories which use c-spinor fields (Bleecker, 1981; Lichnerowicz, 
1964) and theories that use e-spinor fields (Graf, 1978; Benn and Tucker, 
1983a, b, 1985a, b; Blau, 1987). The c-spinor fields are sections of the so- 
called covariant spinor bundle and the e-spinor fields are elements of the 
Clifford or the spin-Clifford bundles. These two bundles are of very different 
nature. Indeed, the Clifford bundle always exists (Graf, 1978), whereas the 
existence of the covariant spinor bundle imposes several constraints on the 
base manifold of the bundle [which is taken as a Lorentzian manifold 
modeling space-time (Crumeyrolle, 1969, 1971; Milnor, 1963; Bichteler, 
1963, Geroch, 1968; Rodrigues and Figueiredo, 1989, 1990a)]. 

The use of algebraic spinors fields (representing the covariant Dirac 
spinor fields) taken as ideal sections of the Clifford bundle in Graf (1978), 
Benn and Tucker (1983a, b, 1985a, b), and Blau (1987) shows that the local 
representation of these a-spinor fields does not transform under local 
Lorentz transformations in the same way as the c-spinor fields. 

In Rodrigues and Figueiredo (1990a) (henceforth called II), we study 
the structure of the covariant spinor bundle, the Clifford bundle, and a new 
bundle called the spin-Clifford bundle. We show that to obtain an a-spinor 
field with the same transformation law as a c-spinor field under a local 
Lorentz transformation, it is necessary to take the a-spinor field as a section 
of the spin-Clifford bundle. In II we also use these bundles together with 
the explicit construction of the Weyl a-spinor obtained in this paper (Section 
4.2) to study the spinor structure of space-time and to obtain a new proof 
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of Geroch's (1968) theorem that requires only elementary knowledge of the 
bundle reduction process. 

The definition of o-spinors given by Hestenes for R1.3 and generalized 
by Dimakis (1986) for real Clifford algebras Rp, q is presented in Section 4.6 
together with their relations with c-spinors and e-spinors. 

In Rodrigues and de Oliveira (1990b) (henceforth called III) we show 
how to write Dirac and Maxwell equations in the Clifford and spin-Clifford 
bundles over space-time and study in detail the transformation laws of these 
fields viewed as sections of the Clifford or the spin-Clifford bundle. Finally, 
in Section 5 we present our conclusions. 

2. S O M E  GENERAL FEATURES OF CLIFFORD ALGEBRAS 

2.1. Introduction 

Let V be a vector space of finite dimension n over the field F and let 
Q be a nondegenerate quadratic form on V. The Clifford algebra C( V, Q) = 
T(V) / Ip ,  where T(V) is the tensor algebra of V(T(V)=~ i~  ~ Ti(V); 
T~~ = F; T~(V) = V; Tr(V) = | V) and l o is the bilateral ideal gener- 
ated by the elements of the form x |  Q(x)l ,  x c V. The signature of Q 
is arbitrary. The Clifford algebra so constructed is an associative algebra 
with unit. The space V is naturally imbedded in C(V, Q). We have 

i 
V,--~ T(V)  j-, T ( V ) / I Q = C ( V , Q ) ,  i o= jo i ;  V=- IQ(V)cC(V ,Q)  

Let C+( V, Q) [respectively C-(V, Q)] be the j-image of ~g~o T2~(V) 
[respectively ~i~o T2i+~(V)] in C(V, Q). The elements of C+(V, Q) form 
a subalgebra of C( V, Q) called the even subalgebra of C( V, Q). 

C( V, Q) has the following universal property: If A is an associative 
F-algebra with unit, then all linear mappings ~b: V~  A such that (~b(x))2 = 
Q(x)l,  Vx~ V, can be extended in a unique way to a homomorphism 
r C(V, Q ) o  A. 

In C( V, Q) there exist three linear mappings which are quite natural. 
They are extensions of the mappings: 

(a) Main Involution. An automorphism []: C(V, Q)-~ C(V, Q) exten- 
sion of a: V ~  T(V) / Io ,  a ( x ) = - i o ( x  ) = - x ,  Vx c V. 

(b) Reversion. An antiautomorphism *: C(V, Q) ~ C(V, Q) extension 
of ': Tr(V)~  T'(V),  Tr(V) ~x = xi,|174 x' =x,r|174 

(c) Conjugation. ": C( V, Q) ~ C( V, Q), defined by the composition of 
the automorphism [] with the antiautomorphism *, i.e., if x ~ C( V, Q), then 

= (x*)  =. 
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C(V, Q) can be described through its generators, i.e., if {e~}, i =  
1, 2 , . . . ,  n, is a Q-orthonormal  basis of  V, then C(V, Q) is generated by 1 
and the el subject to the conditions eie~ = Q(e;) l  and e~ej+eje~ =0,  i ~ j ,  

i , j  = 1, 2 , . . . ,  n. I f  V is an n-dimensional real vector space, then we can 
choose a basis {e~} for V such that Q(e~) = +1. 

2.2. The Real Clifford Algebras Rp,q 

Let R p'q be a real vector space of dimension p + q = n equipped with 
a metric g: R p'q x R p'q ~ R. Let {e~} be the canonical basis of  R p'q such that 

~ +1, 

= = l - 1 ,  
g(e~, ej) = gv g(ej ,  e,) = gj, 

O, 

i = j = l , 2 , . . . , p  

i = j = p + l , . . . , p + q = n  

i ~ j  

The Clifford algebra Rp, q = C ( ~  p'q, Q); p + q = n, in the Clifford algebra 
over the real field R, generated by 1 and the {e~}, i = 1 , . . . ,  n, such that 
Q(ei )  = g(ei, ei). The Rp, q is obviously of  dimension 2 n and it is the direct 
sum of the vector spaces Rk, q of  dimensions (~), 0 -  < k -  < n. The canonical 
base f o r  ~k,q are the elements e A = e~, �9 �9 �9 e~k, 1 <- a~ <-.. .  <- ak <-- n. The 
element ej = el �9 �9 �9 en ~ E~,q commutes (n odd) or anticommutes (n even) 

0 with all vectors e l , . . . ,  en in Rlq = RP'q. The center of  ~p,q is  ~p,q = ~ if n 
0 n is even and it is the direct s u m  ~ p , q ~ p , q  if n is odd (Blaine Lawson and 

Michelsohn, 1983; Felzenswalb, 1979). All Clifford algebras are semisimple. 
I f  p + q = n is even, Rp, q is a simple algebra and if p + q = n is odd, we have 
the following possibilities: 

( a )  ~p,q is simple-~--~ e 2 = - 1  ~--~p - q ~ 1 (mod 4) *--~ center Rp.q is isomor- 
phic to C. 

(b) ~p.q is not s i m p l e , , - ~ e 2 = + l , , - + p - q = l  (mod4)~--~center Rp, q is 
0 n isomorphic to Rp, qO)Rp, q. 

From the fact that all semisimple algebras are the direct sum of two 
simple algebras (Blaine Lawson and Michelson, 1983) and from Wedden-  
burn ' s  Theorem [if A is a simple algebra, then A is equivalent to F ( m ) ,  

where F is a division algebra and rn and F are unique (modulo isomorph- 
isms)], we obtain from the point of  view of representation theory Rp, q ~ F ( m )  

or Rp, q =  F ( m ) • F ( m ) ,  where F ( m )  is the matrix algebra of  dimension 
m x rn (for some m) with coefficients in F = R, C, H. 

Table I (where In /2 ]  means the integral part  of  n / 2 )  presents the 
representation of Rp, q as a matrix algebra (Blaine Lawson and Michelsohn, 
1983; Coquereaux, 1982). 
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Table I. Represen ta t ion  o f  the  Real  Clifford Algebra  Rp, q As a Matr ix  Algebra  

p - q(mod 8) 0 1 2 3 4 5 6 7 

R(2E"/23) R(2["/2] -~) 
Rp.q •(2 In/2]) (~ ~(2 In/2]) C(2 In~2]) H(2 En/2-1]) @ H(2 [n/2-1]) C(2 En/2]) 

R(2 In/2]) H(2(n/21-1) 

2.3. Minimal Lateral Ideals of  Rp,q 
The minimal left ideals of  a semisimple algebra A are of  the type Ae,  

where e (e 2= e) is a primitive idempotent of A. An idempotent is primitive 
if it cannot be written as a sum of  two nonzero orthogonal idempotents, 
i.e., e # ~ + ~ ,  where #2=#, ~2=~, and ~ = ~ # = 0  (Blaine Lawson and 
Michelsohn, 1983). Recall that when p + q = n is even, Rp, q ~- F ( m )  (Table I). 
We also have the following result. 

Theorem.  T h e  maximum number of  pairwise orthogonal idempotents 
in F ( m )  is m (Felzenswalb, 1979). 

The decomposition of Rp, q into minimal ideals is then characterized 
by a spectral  se t  {epq, i} of  idempotent elements of Rp, q such that: 

(a) ~ epq, i = 1. 

(b) epq, iepq, j = t~ijepq, i. 

(c) The rank of  evq,~ is minimal and nonzero; i.e., epq,~ is primitive. 

Here the rank of epq,~ is defined as the rank of the 0) A d ( R  p 'q ) -mOrph i sm 
epq,~: ~b~t~epq, i, where 0) A d ( R  p'q) is the exterior algebra of  R p'q. Then 

i i i 
~p,q : ~ Ip,  q ,  Ip,  q = ~p,  qepq, i , and ~b ~ Ip, q c ~p,q is such that ~pepo,~ = @. Con- 
versely, any element ~b e Ip, q can be characterized by an idempotent epq,~ of  
minimal rank #0  with @epq,~ = ~p. 

We have the following theorem. 

Theorem (Lounesto, 1981). A minimal left ideal of Rp, q is of  the type 
Ip, q = Rp, qepq, where epq = 1/2(1 + e~,) �9 �9 �9 1/2(1 + e~k) is a primitive idem- 
potent of  ~p,q and where e . . . . . .  , e,k is a set of commuting elements of the 
canonical basis of Rp, q such that (e~,) 2= 1, i = 1 , . . . ,  k, that generates a 
group of  order k = q - rq_p and ri are the Radon-Hurwitz  numbers, defined 
by the recurrence formula r~+8= r~+4 and Table II. 

Table II. R a d o n - H u r w i t z  N u m b e r  

i 0 1 2 3 4 5 6 7 
r i 0 1 2 2 3 3 3 3 
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I f  we have a linear mapping La : Rp, q -> Rp, q ~ La (x), Vx ~ Rp, q, and where 
a ~ Rp.q, then since Ip, q is invariant under left multiplication with arbitrary 
elements of  Rp, q, we can consider L~llp.q : Ip, q ~ Ip, o. We have the following 
result. 

Theorem.  I f  p + q = n is even or odd with p - q ~ 1 (mod 4), then 

Rp, q ~- ~ F (  Ip, q) ~-- F ( m )  (17) 

where F = R or C or H, ~ p( Ip ,  q) is the algebra of  linear transformations in 
Ip, q over the field F, m = dimp( Ip ,  q), and F ~- e F ( m ) e ,  e being the representa- 
tion of  epo in F ( m ) .  I f  p + q = n  is odd, with p - q = 1  (mod4) ,  then 
[~p,q ~- ~F(Ip ,  q) ~- F ( m ) O )  F ( m ) ,  m = dimF(Ip ,  q), and epq~p, qepq ~ a ~ a  or 
H~H. 

With the above isomorphisms we can identify the minimal left ideals 
Rp.q with the column matrices of  F ( m ) .  

Now, with the ideas introduced above it is a simple exercise to find a 
primitive idempotent  of  Rp, q. We have the following algorithm. We first 
look at Table I and find the matrix algebra to which our particular Rp, q is 
isomorphic. Let Rp, q ~ F ( m )  for a particular F and rn. 2 Next we take from 
the canonical basis {eA} of Rp, q 

eA = e131. . . et3k , l <-- fll  <-- . .  " <- t~k <-- n, p + q = n 

2 = 1. We then construct the idempotent  an element e~, ~ {CA} such that e~, 
epq= 1 / 2 ( 1 + e ~ )  and calculate d imz ( Ip ,  q). I f  dimF(Ip, q )=  m, then epq is 
primitive. I f  dim~(Ip, q) # m, then choose 3 {eA} ~ e~2]e2: = 1 and construct the 
idempotent  e'pq= 1 / 2 ( l + e ~ , ) 1 / 2 ( 1 + e ~ )  and calculate d imF( I p ,  q), where 
Ip, q '  ---- ~p, qepq: I f  dimF(I~q), = m, then epq is primitive. Otherwise, repeat the 
procedure. According to the theorem above, the process is finite. 

We will discuss the problem of the equivalence  of representations of  
Rp, q when we take the minimal left ideals (instead of  some vector space 
isomorphic to them) as representation modules of  ~p,q, after the introduction 
of the concept of  the spin groups (Section 3). 

3. ALGEBRAIC SPINORS,  SPIN GROUP,  S P I N O R I A L  
REPRESENTATION,  AND S P I N O R I A L  METRIC 

3.1. The Spin Group Spin (p, q) 

The invertible elements u ~ Rp, q such that Vx ~ Rp, q--- ~P'q we have 
u x u - l ~  R~,q form a multiplicative group of •p,q called F(p, q). Consider 

2We are supposing Rp, q is simple. The procedure is also straightforward when Rp.q is semisimple. 
3All elements e,,, are actual commuting elements as stated in the last theorem. 
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now the norm mapping  N:  Rp, q --> Rp, q, N ( u )  = ~u. I f  u a F(p, q), then N is 
a homomorphism of the group F(p, q) into the multiplicative group of the 
nonnutl multiples of  Rp, q. 

We define the groups Pin(p, q) = {u c F(p, q ) ] N ( u )  = +1}, Spin(p, q) = 
Pin(p, q) c~ ~p+q, and Spin+(p, q) = {u ~ F(p, q)lau -- +1} c~ Rp+,q as the con- 
nected component  of  Spin(p,q)  that contains the identity. We can show that 
Spin§ q ) / Z 2  = SO+(p, q), where SO§ q) is the special rotation group 
of ~P'q. For more details see Figueiredo et al. (1988). 

3.2. Algebraic Spinors 

Given a real Clifford algebra ~p,q, w e  call elementary algebraic spinors, 
or a-spinors for short, the elements of  the minimal left (right) ideal Rp, qepq 

d- r t § t ( epqRp, q) or ~p, qep, q ( epq~p,q), where epq, ep, q are primitive idempotents of  
Rp, q. We call algebraic spinors or e-spinors the elements of  left (right) 
nonminimal  ideals of  Rp, q. 

3.3. Spinorial Representation. Scalar Product of Spinors. 
The Spinorial Metric 

Given the definitions of  the group Spin§ q) and of algebraic spinors, 
we can make the ideals Ip, q = Rp, qepq into spinorials of  SO§ q) in the sense 
of  group, by introducing a spinorial metric in Ip, q that "mimics"  the results 
of  Sections 1.1-1.4 and which is invariant under the mappings ~-->u~p, 
u ~ Spin+(p, q), ~p ~ Ip, q. 

The " t ransformation law" tp ~ uO corresponds to the usual transforma- 
tion of covariant spinors, but this t ransformation law is not the one to which 
an algebraic spinor field is subject when intended as a section of the Clifford 
bundle. This transformation law is, however, the one to be used when 
algebraic spinor fields are viewed as sections of  the spin-Clifford bundle. 
All these points that have to do with the equivalence of  the minimal ideals 
O f R p ,  q a s  representation modules O f ~ p , q  a r e  discussed in detail in Rodrigues 
and Figueiredo (1990), Rodrigues and de Oliveira (1990), and Figueiredo 
et al. (1988). 

In Section 2.3 we saw that if ~p,q is simple, a minimal left ideal Ip, q of  
Rp, q is of  the form Ip, q = Rp, qepq, where epq is a primitive idempotent  of  Rp, q 
and F - epq Rp, qepq with F = R or C or H, depending on p - q = 0, 1, 2 (mod 8), 
p - q = 3, 7 (mod 8), or p - q = 4, 5, 6 (mod 8), respectively (Table I). We 
can then define an action F in Ip, q, F x Ip, q -~ Ip, a, by F x Ip, q ~ (0r ~b ) -~ OLd/E 
Ip, q. In this way Ip, q has a natural linear vector space structure over the field 
F, whose elements are the natural "scalars"  of  the vector space Ip, q. 

These remarks suggest that we search for a "natural  scalar product"  
o n  Ip, q, i.e., a nondegenerate bilinear mapping F: Ip, q X Ip, q "--> F. TO this end, 
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we observe that i f f  and g are F-endomorphisms in ~p,q, then we can define 
a bilinear mapping F in Rp, q using f and g. We simply take F(0, r  = 
f (  O )g(  ~ ), ~, ~o ~ Rp, q. Considering that lp, q = Rp, qepq has a natural structure 
of vector space over F, we can take the restriction of F to Ip.q, and ask the 
following question: 

For ~, q~ ~ Iv, q, when does F(O, r ~ F ?  
As we saw in Section 2.1, we have three natural isomorphisms defined 

in Rp, q, the main involution, the reversion, and the conjugation, denoted, 
respectively, by [], *, and . Combining these isomorphisms with the identity 
mapping, we can define the following bilinear mappings: 

Vi  : Ip, q x Ip, q -~ Rp, q, i = 1, 2, 3 

r,(r  ~) = 4,% (18) 
r2 (r  ~ )  = 4,*~ 

As already observed in Section 2.1, the main involution is an 
automorphism, whereas the reversion and conjugation are antiautomorph- 
isms. An automorphism (antiautomorphism) transforms an element of a 
minimal left ideal into an element of a minimal left ideal (minimal right 
ideal). 

To see the validity of  these statements it is enough to observe that the 
image of a primitive idempotent under an isomorphism is a primitive 
idempotent and that if O ~ Ip, q = ~p, qepq, then ~b = Xepq with x ~ Rp, q and 

r  [] ~ [] , _ D X e p q ~ b  e l p ,  q - N p ,  qepq 

O* = ( Xepq ) * = e *qx* ~ O * e * Ip, q = e*qa p, q (19) 

Using the isomorphism Np, q ~-~ 'z ( Ip ,  q ) ~ - F ( m ) ,  m = dimF(Ip, q) (when 
Np, q is simple; cf. Section 2.3), we identify the elements of the minimal left 
ideals of  Np, q with the column matrices of  F ( m ) .  Then, if 0 e Ip, q has a 
representation as a column matrix of F ( m ) ,  then qJ* and ~b have representa- 
tions as row matrices of F ( m ) ,  and we get that r  and q~ are elements 
of F. 

We identify the scalars of the vector structure of  Ip, q with multiples of  

o o "" (20) 
e p q =  0 0 ' '  
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i.e., as matrices in F(m)  multiples of the matrix in equation (20). Sometimes 
it may be convenient to choose the 1 in ep, q in another lirie. Through 
isomorphisms of  Rp.q (multiplication by a convenient invertible element 
u ~Rp, q), we can transport ff*~ or ~r to the position (1, 1) in the matrix 
representation of these operations. We then conclude that the natural scalar 
products in Ip, q are 

f l i  = Ip, q X Ip, q --~ F, i = 1, 2 (21) 

/81(4,,~p)=u'~b*q~ and fl2(~b,~)=uq~q~, V~,~oclp, o and u,u'~Rp, q, are 
convenient invertible elements. 

Lounesto (1981) obtains the scalar products in equation (21) using 
similar arguments and immediately proceeds to the classification of  the 
group of automorphisms of  these scalar products, i.e., the homomorphisms 
of F-modules, Ip, q --~ Ip, q, ~1 -~ S~l, S E ~p,q ,  which preserve the products in 
equation (18). Observe that from fll(s~b, s~o)= fll(~b, ~) we get s*s = 1 and 
from fl2(s$, s~0) =/32(~0, r  we get #s = 1 (~, q~ ~ Ip.q). Lounesto calls G1 = 
(s ~ Rp, q ; s*s = 1}, G2 = (s ~ Rp.q, gs = 1}. 

So in Lounesto's paper there does not appear clearly any relationship 
between the groups Spin§ q) and the groups G~ and G2, with the con- 
sequence that we do not have a clear basis to mimic within the Clifford 
algebras Rp, q (for appropriate p and q) the results described in Sections 
1.1-1.4. We can mimic these results within some Clifford algebras by 
introducing the concept of  spinorial metric. 

Observe that since Spin+(p, q) c ff~p.q§ it seems interesting to define a 
§ + 

scalar product  in an ideal Ip ,  q = Rp, qepq. The reason is that such a scalar 
product  is now unique, since if s ~R~.q, then s*--g. This unique scalar 
product  will be called in what follows the spinorial metric 

f l :  Ip+q • I~,q ~ F (22) 

defined by fl(~b, q~)= u ~ .  We see that G={scR~.ql~S = 1} is the group of  
automorphisms of the spinorial metric just defined and G c G~, G c G2. 

We now recall the following theorem from Porteous (1981), which says 
that for p+q<-5 

Spin+(p, q) = {u c Rp+,q ] ~u = u*u = 1} 

With this result we get a new interpretation of the groups Spin§ q) 
for p + q-< 5, namely, these are the groups that leave the spinorial metric 
of  (22) invariant. But even more important is the fact that now we know 
how to mimic within appropriate Clifford algebras Sections 1.1-1.4 and 
thus we can present representations within Clifford algebras of  the Pauli 
c-spinors, undotted and dotted bidimensional c-spinors, and Dirac c- 
spinors. This is done in Section 4, and in Figueiredo et al. (1988). 
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4. REPRESENTATION OF PAULI c-SPINORS, UNDOTTED AND 
D O T r E D  TWO-DIMENSIONAL SPINORS,  AND DIRAC 
c-SPINORS BY APPROPRIATED ALGEBRAIC SPINORS 

4.1. Pauli a-Spinors and the Group SU(2) 

The algebra R3,o (Pauli algebra) is isomorphic to C(2) (see Table I). 
R3,o is generated by 1 and o-i, i = 1, 2, 3, subject to the condition o-i% + %o'~ = 
260, 6 u - d i a g ( + l ,  +1, +1). It is trivial to verify that e3o = 1/2(1+o-3) is a 
primitive idempotent  of ~3,o- Now, consider x ~ R3,o, 

X=ao+alerl+a2o-2+a3er3+a4o-lo-2+a5o'lo-3+a6er2o'3+a7o-ler2o" 3 (23) 
a~eR, i = 0 , . . . , 7  

+ 
The elements ~ ~ 13,0 -= Ip = R3,0e30 = R3,0e30 (Pauli a-spinors) are of the 

form 

= e30[(ao+ a3)e30+ (a4+ a7)o'lo'20"3e30] 
+ o'le30[(a1 + as)e30+ (a2 + a6) 0"10"20"3 e30] (24) 

It is then immediate that e30R3,0e30 ~ C has basis {1, O-lO'2er3}e3o and the 
spinorial basis is a = {e3o , erle3o}. We now show that the elements of Ip are 
the representatives of Pauli c-spinors (Section 1.1). 

Using the isomorphism R3,o f ~c(Ip)  (Section Z3),f(x)~b = xO, u ~ R3,o,  

~b e Ip, we obtain the representation of x ~ R3,o in the a-basis through the 
following a lgor i thm:  Put 

e3o = I1), o ' , e 3 , o  = 12); 

Then 
(ll = e*o ,  (21 = (o- le3o)  * = e3oo'l ( 2 5 )  

1 = Y. 1i)(i1, i =  1, 2; ( i / j )  = 6/je3o 
i 

x = x Y. li)( i l ~  xli) = Y~ xj, lj); xji = (jlx[i) 

e3o=[10 00]; er, e3o=[01 00]; 

(26) 

o-,=[01 ; ] ;  o-2=[~ ~ ] ;  e r a = [ ;  _~]  

We also have the following matrix representations for x, x D, x*, and 

c 2, x=[Zl z2] xo=E ,3] 
Z3 Z4 ' __ 5 2 51 

[ ] [ q X ,  = fZl Z 3 .  2 =  Z4 

52 5 4 '  -z3  z, 

41f x E R3.o, we use the same letter for f(x)~ C(2)= ~c(lp). This should cause no confusion. 
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From equations (27) we see that the main ant iautomorphism * corre- 
sponds in the Pauli algebra to the operation * in matrix algebra. 

We now define the spinorial metric 

/3: I p x l p - + C ;  /3(~, ~) = 2(t#*~)o = ~ '~1  + ~2~ 2 (28) 

where (.)o means the scalar part  of  the Pauli number. 
The representation of /3  in the a-basis  is then 

Also, /3(~,  ~) =/3(uq4 u r  u*u = 1 r u ~ U(2). 
+ 

Now, if x e R3,o-~ Ro,2 - H, we have the following representation for x 
in the a-basis:  

[z :1 [: :] x = and ~ = x* = (30) 
W 

Then N ( x )  = ~x = det x .  ~ N ( x )  = 1 <=> det x = 1. So, the elements u 
R3+,o such that/3(ur u~) =/3(~,  ~), ~, ~ e Ip, satisfy au = 1 and det u = +1, 
which means that u e  SU(2)=Spin+(3 ,0) .  Our statement that Pauli c- 
spinors are represented by the elements of  Ip = [~3+oe3o (Pauli a-spinors) is 
then proved. 

4.2. Representative of Weyl c-Spinors and Dirae c-Spinors within 
Ri,3 and SL(2, C) 

The algebra RI, 3 is generated by 1 and the vectors e~ such that 

e,.e,,+e,,e,. = 2~.~, t/.~ = d iag(+l ,  - 1 ,  - 1 ,  - 1 ) ;  t*, u = 0 ,  1,2, 3 

Consider the isomorphism R~,o ---y R~,3, where f is the linear extension 
o f f (o ' i )=e ieo  and o-icR 3'~ as in Section 4.1. Since e3o=1/2(1+o-3) is a 
primitive idempotent  of  R3.o, f(e3o) = 1/2(1 + e 3 e0) is a primitive idempotent  
of  R~,3. Also, since R1,3 = H(2), e13 =f(e3o) = e is also a primitive idempotent  
of  R~.3, since 

d imR ~1,3 e = 24/2 and d imH R1,3e = 2 

Io = R~,3e is a bidimensional quaternionic space and ~0o e Io is a representa- 
tion of the Dirac spinors, as we shall prove. Let a ~ R1,3e, 

a = s + (aoeo+ ale1 d- a2e2 d- a3e3) 

+ (aoleoe I -I- ao2eoe2+ ao3eoe 3 -I- a~2e~e2+ a13ele3+ a23e2e3) 

+ (am2eoele2 + ao~3eoe~ e3 + ao23eoe2e3 -t- a123ele2e3) 

+ peoel e2e3 (31) 
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Then  ~bo e R1,3e is such that  

~o = e[xoe + x,ele + x2e2e + x3eleze] 

+ el eoe[yoe + ylele + yzeEe + y3ele2e] (32) 

where  eRi,3e = H has basis {1, el ,  e2, elez}e. 

4.2.1. Contravariant Undotted a-Spinors 

C o n s i d e r  the minimal  left ideal I = R/,3e. Then  ~7 e I can be written as 

= e(Xo+ x3i) + eoel(yo+y3i) (33) 

where eR~,ae = C  has basis {1, i}e, where 

i --- e~ = eoele2e3 : Xo, x3, Yo, Y3 e R 

We write 

"o=e~l+eleoei72=s~'+s2~ z= 2 ~ e C e ,  i = 1 , 2  (34) 

4.2.2. C ovariant Undotted a-Spinors 

Now, the covariant  undot ted  spinors can be identified with the elements 
of  the ideal ~N~,3 =/~,  with ~ = 1 - e. 

I n d e e d / ~  = (0R~,3) = (R/,3e) ~ and then if  

R~,3e~7=[e(xo-xlie)+ohe(yoe-y~ie)]=e~71+o'1e~72=(~: 00) 

~=[(xoe-xlie)e--((yoe-ylie)e)eo'~]'-=Tqle-~2eo'l~-( 02 O1) 

Then 

77 : Orl~ : [(xoe --xlie)eoh - (yoe -ylie)e] 

= (r l lecr l_  ~72e)~_ ( _ O  2 ~1) 

Note  that  we can define the spinorial metric is I c by 

/3: I C x I r  C; /3(~7, s = 2(~s = ~7tCs 

(35) 

(36) 
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4.2.3. Contravariant Dotted Spinors 

We identify the contravariant dotted spinors with the elements of the 
ideal e R 1 ,  3 . We already know that eRl.3 --- I ~* and then we identify i ~ --- I ~*. 

Then if ~j ~ i ~ we have 

~j = [ ( x o e  - x l i e  )e  + (yoe - ylie )e0-1] 

=rileW'~2e0-1-----(~O ' 0 a) (37) 

4.2.4. Covariant Dotted Spinors 

We identify the covariant dotted spinors with the elements of the ideal 
ic -- R~.ae = (eR1,3) ~. 

Indeed we have that if 9 c eR~,3 then 

~7 =[e(xoe-xlie)-0"1e(yoe-ylie)]=(~ -~ i )  

Then 

~o'l=-[0-1e(xoe-xlie)-e(yoe-ylie)]~--(-~ 00) (38) 

A 
and we put  ~j =-~J0-1. a. 

We can define the spinoral metric r ,  by 

/3: IC x F - > C ;  /3(r~, ~) = 2 (~ )o  (39) 

In the spinorial basis a = {e, eleoe} of I we have the following rep- 
resentation for 0-i = eieo, i = 1, 2, 3: 

0-1=(7 10); ~ ; i ) ;  ~ ? 1 )  (40) 

Observe now that we can write, from equations (31), (33), and (37), that 
A 

0 o  = ~ + eo)? ( 4 1 )  

Now, let x c R~,3. Then we have that if x ~ C(2) is the representative 
of x c ~ .3 ,  then 

x = ~ eoxeo = = (x*)-I (42) 
z3 z j  -z2 Zl 
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From equations (41) and (42) we have that, for u ~ Spin+(1, 3), trio--> 
g'b = u~br) and 

A A r 4 '  
u~ o = uq~ + ueo)~ = uq~ - eo[(U*)-l)?] = ~ + eo X (43) 

Equation (41) shows that Io  is the carrier space of the representation 
D(1/2'~ D (~ of Spin+(1, 3)---SL(2, C) as defined in Section 1.3. 

Observe also that from equation (33) we can write 

~bo = eoe~bl + el eq,2 + e~b3 + el eoe~b4 (44) 

with q'i ~ eR1,3e = C with basis {1, e}e2e~. 
A complex spinorial basis for ID is then a o  = {eoe, ele, e, eoele}. 
Consider now the injection 

3': ~,.3"-> ~ f c ( I o ) r  

x - - 7 ( x ) :  I o ~  Io  

r  ~ xr 

We get the following representat ion for e,~, ~ = O, 1, 2, 3, in the ,~o-basis: 

(0 :) 
0 , y ( e i ) = y ~ =  , i = 1 , 2 , 3  (45) y(eo)= 70 = ~2 --O'i 

We can also mimic the spinorial metric in C(4) (Section 1.3), defining 

t ip:  ID• ~D(O,~)=2(O*e3elq~)o  (46) 

4.3. Representations of Weyl and Dirac c-Spinors in Ra,~ 

Now ~3,~-~(4)  (see Table I), the Majorana algebra is generated 
by 1 and the vectors e.  such that ~ . ~ + ~ . ~  =-2~7.~; t l .~= 
d i a g ( + l , - 1 , - 1 , - 1 ) ,  / x , p = 0 , 1 , 2 , 3 .  We can easily verify that ~= 
1/2(1+~3~o) is a primitive idempotent of + + ~ 3 , 1 " - ~ 3 , 0 = ~ 1 , 3  . Then each 
~o c I + - be written as = 1~3,1e c a n  

= P~ + ~o~q~2 (47) 

where ~1, ~2e ~N~.~= C has basis {1, i}o, where i=-eoe~e2e3 =-o'1o"2o'3, 
o-~ = ~ o ,  i =  1,2,3.  

It follows that the structure of the Weyl spinors is equal in the N~,3 
algebra. What we want now is to represent the Dirac spinors inside N3.~. 
Observe that unlike the case of N~,3, e = 1/2(1+ ~3eo) is not a primitive 
idempotent of ~3,1" 
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However, for each x ~ R3,1 we can write 

R1, 3 ~ X = X + -]- eoy+; x +, y+ c R3+l (48) 

Also, if u e ~3+,1 and if u c C(2) is the representative of  u in the canonical 
spinorial basis, then 

u = =:~ ~oU~o = = - (  u*)-I (49) 
2"3 Z4 22 -- Zl 

It follows that the objects of  the nonminimal ideal 

A 
ID = ~1,3 ~, ~/r = ~) "~- eoX 

transforms under the action of u e Spin+(3, 1) = Spin+O, 3) -~ SL(2, C) as 

A 14 
,~o--, u~o = uq, + UOo2= uq, + 0o[(U*)- 2] (50) 

From equation (50) it follows that the nonminimal ideal [o is the 
carrier space of  the representation D(1/2"~ D (~ of the group SL(2, C). 
The 0o  is an e-spinor according to the definition given in Section 3.2. 

This example shows that when working with Clifford algebras we cannot 
restrict the representation of  the c-spinors used by physicists only to elements 
of  minimal lateral ideals. 

4.3.1. Majorana Spinors 

The elements of the minimal left ideals of R3n are the Majorana spinors. 
They can be constructed by the standard procedure used above. 

Since ~ = 1/4(1 + ~3~0)(1 + e2) is a primitive idempotent of ~3,1, we have 

IM = N3,1~ ~ qtM = el el]/1 + el]/2 + eoel el~t3 ~- eoel~4 (51)  

w h e r e  Oi c eN3,1e = N, i = 1, 2, 3, 4. 
It is interesting to compare (51) with (44), which express ~bM in IM 

and qso in Io. 
Consider now the isomorphism 

x,--> ~,(x): IM-- , I~  
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We get the following representation for ~ , , /z  = 0, 1, 2, 3, in the ara = 
{~1, 8, ~ ,  ~ o ~ ,  ~0d} basis [ y ( e , )  - y~,], 

 o/0 I o) ;  

0 3) (52) 

Equations (52) show a set of  what is usually called in the literature 
Majorana matrices and our presentation shows how easy it is to find a set 
of  Majorana matrices with the techniques of  this paper. 

4.4. Representations of Dirac c-Spinors within the R4,~ Algebra 

From Table I we see that ~4,1, ~2,3, and Ro.5 are isomorphic to the 
algebra C(4), which is the usual Dirac algebra of  physicists. In order to 
identify the algebra that carries the physical interpretation associated with 
space-time (R"3), we proceed as follows. Let EA, A = 0 ,  1, 2, 3, 4, be an 
orthonormal  basis for ~P'q with p + q = 5, The volume element is Ej = 
EoE1E2E3E4 and we get E 2 = - 1  for q = 1, 3, 5. Now define 

el. z .~- E i x E  4 (53)  

and impose that e,  is an orthonormal basis for R 1'3, i.e., 

2 2 2 eo= -EoE4= +1, e 2 2 2 = -EKE4 = - 1 ,  k = 1, 2, 3 (54) 

Equations (54) are satisfied when p = 4, q = 1, i.e., E42 = E 2 = - E  2 = 1, 
and we conclude that the real Clifford algebra associated with space-time 
(R ~'3) and isomorphic to C(4) is R4,1. 

g + 
Equation (54) shows that R~,3-R4.~ where g is the linear extension of 

g ( e , ~ )  = E , ~ E 4 ,  /z = 0, 1, 2, 3. W e  already saw in Section 4.2 that f(e3o) is a 
primitive idempotent  of  Ra 3 and we have that g(f(e3o)) is a primitive 
idempotent  of  R~-,. Then f~ = R~lg(f(e3o)) is a minimal ideal R,+, which 
is a 4-dimensional vector space over the complex field and its elements, the 
Dirac a-spinors,  are representations in R4,1 of Dirac c-spinors. 

4.5. Representation of the Standard Dirac c-Spinors within 
the R~,3 Algebra 

It is obvious that ~ = 1/2(1 + eo) is a primitive idempotent  of  RI, 3 . Also 
we can easily verify that for any x ~ R1,3 there exists y ~ R~,3 such that x~ = y~. 
It follows that iD = R~,3( is a minimal left ideal of Ri,3. The elements ~o c Io  
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can be written in the form 

---- ~b 1 -t- e 3 e l ~ 2 - t -  e3~b 3 --t- e l ~ b  4 (55) 

~t i E e~l,3 ~ = C wi th  bas is  {1, e2el}~. 

The ~ are the representatives of standard Dirac c-spinors, which are 
the kind of  c-spinors that appear in the usual form of  the Dirac equation 
(Landau and Lifschitz, 1971). 

The isomorphism 

3,:  edio) 

gives, through the technique introduced in Section 4.1, the following rep- 
resentation for e . , / z  = 0, 1, 2, 3, and e5 = eoele2e3 in &D = {~, e3el~, e3e, ele}, 
a complex spinorial basis for io.  

Putting 3'(6o)= {]1), [2), 13), ]4)} and 3,(e.)= y . ,  3,(e5)= Ys, we have 

0] :I ~ :1 :[0 i = [6/1]; 3'0 = -~2 3,k , 3,5 
' tTk i~2 

(56) 

where [6/1] is the 4 x 4 matrix with one in the /-line of the first column, all 
other elements being zero. Also, i = v/-~. The set of  3, matrices in (56) is 
usually known as the standard representation of Dirac matrices (Landau 
and Lifschitz, 1971). 

Observe now that the idempotents ~ = 1/2(1 + eo) and e = 1/2(1 + eaeo) 
are related by 

e=u~u-1; u = ( l + e 3 )  (57) 

Since u = ( l + e 3 ) ~ F ( 1 , 3 ) ,  the ideals ID and [o are not equivalent 
(module) representations of RI,3 (Figueiredo et al., 1988), although from 
the point of  view of group theory both ideals are carrier spaces of the 
representation D(1/2"~176 of SL(2, C). The point is important for 
papers II and III of this series. There we will need also the following results, 
which are trivially established: 

I1) = 3o11); ill) = y2ylll); [2) = - 3,s3,211); 
(58) 

[3) = 3,311); 14) = 3'111) 
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4.6. Operator Spinors 

Hestenes (1967, 1971a, b, 1975; Hestenes and Sobezyk, 1984) defines 
an operator  (o-spinor) in Rp, q as follows: 

An o-spinor in Rp, q is a bilinear map Rp+q ~ 4': R p'q given by 4'x4'- '  = y 
for x, y E R  p'q. 

Now, the invertible elements of ~p,q such that uEZxu -1 = y, for x, y ~ R p'q, 
u ~ Rp, q, form the so-called Clifford group F(p, q) of  Rp, q (Section 3.1). The 
special Clifford group F+(p, q) is defined by F+(p, q) = F(p, q) fq R~,q. [For 
more details see Figueiredo et al. (1988).] 

We then immediately recognize o-spinors as elements of  F+(p, q). I f  
we remember  now that Spin+(p, q ) =  {u ~ F+(p, q ) l N ( u ) =  +1}, we see that 
we can write U:]xU - '  = U x U  -~, V x  c ~P'q, V U E Spin+(p, q). Then for each 
4' 6 F+(p, q) we can write 

4'x4' -1 = y = pz; 

Then, 

x~ y,  z c ~P'q'~ D E ~'~ X2 -.~-. z 2 (59) 

4'X4' - 1 =  flUXU -1 (60) 

Solving for px, we get h x h - l = p x  with h = u-14'. This last equation has a 
solution VX ~ R p'q only if h has a scalar and possibly a pseudoscalar  part. 
We can show that the pseudoscalar  part vanishes unless p + q = 4m, where 
m is an integer. 

For R1,3 we see that the o-spinor can be written as a sum of  two 
even multivectors and has eight degrees of  freedom, since 4 '=  u - lh  = 
u - l ( a  -I- esb), where a, b ~ R and e5 is the unit pseudoscalar  of  RI, 3 . Thus, 
an o-spinor of  ~1,3 has the same degrees of  freedom as a covariant (or 
algebraic) Dirac spinor. 

The correspondence between a Dirac o-spinor and a Dirac a-spinor  
is evident from Section 4.5, since a Dirac a-spinor  is the product  of  an even 
multivector by the particular idempotent e -- �89 + eaeo). 

To end this section we remark that the above correspondence, a-  
spinors <--> o-spinors, is simply a generalization of the well-known result that 
we can associate vectors in R p'q with elements tr ~ SO+(p, q) and covariant 
spinors associated with ~P'q with the elements of  the Spin+(p, q) group 
(Bleecker, 1981). The result for p +  q+-< 5 is even more justified since in 
this case Spin+(p, q) = {u ~ ~ , q  [u/.g : 1}. 

5. C O N C L U S I O N S  

Hestenes (1986) said about the theory of  spinors: " I  have not met 
anyone who was not dissatisfied with his first reading on the subject." 
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Well, the reasons for such statement are in our view due to three main 
facts: 

(A) The usual representation of c-spinors such as introduced in Sec- 
tions 1.1-1.4 does not emphasize the geometrical meaning of these 
objects. 

(B) There are no clear connections between the abstract concepts of 
c-spinors and the more abstract concepts of a-spinors, e-spinors, 
and o-spinors as elements of particular Clifford algebras. 

(C) The representation of a-spinor (or e-spinor) fields as sections of 
some Clifford bundles (over space-time) and the problem of the 
"transformation law" of spinors. 

As to (A), we think that the situation has been partially clarified with 
the presentation by Hestenes (1967, 1971a, b, 1975; also see Lounesto, 1986) 
of the geometrical meaning of Pauli spinors and of Dirac spinors and also 
by Penrose and Rindler (1984) of the quasigeometrical representation of 
the undotted and dotted two-component spinors. 

As to (B), we think that the present paper shows in a clear way how 
to obtain relations between all c-spinors used by physicists and a-spinors 
and e-spinors. The relation of o-spinors is also clarified in Section 4. 

From our approach, in Sections 3.5 and 4 it is clear that a-spinors and 
e-spinors can be thought of as elements of the exterior algebra of the vector 
space V = ~P'q. It follows that the usual claim that spinors are more funda- 
mental than tensors is a non sequitur. 

It is very important to emphasize that all our a-spinors or (e-spinors) 
are elements of real Clifford algebras. Other approaches to the subject of 
algebraic spinors (e.g., Crumeyrolle, 1969, 1971; Bugajska, 1979; Salin- 
grados and Wene, 1985) complexify R1,3 or R3.1 [the complexification being 
isomorphic to R4,1=C(4)], introducing unnecessary complications. The 
reason for such a complexification is the need to use a de Witt (Crumeyrolle, 
1969, 1971; Bugajska, 1979) basis for the, spinor space, since those authors 
seemed unaware of the idempotent method used in this paper. 

Another "need" for complexification comes, according to the view of 
Salingrados and Wene (1985) from the fact that R1,3 has only two idem- 
potents and the formulation of quantum electrodynamics, as is well known, 
needs four idempotents (there called projection operators). This "difficulty" 
can be easily solved following Hestenes (1986) simply by introducing a 
single operator that belongs to the dual space R1,3 (here considered as a 
vector space over R). 

We cannot properly discuss here some distinctive features of the 
different representations of Dirac a-spinor (or e-spinor) fields and related 
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Dirac-like equations over Lorentzian manifolds. The interested reader 
should see papers II and III and also Figueiredo et  al. (1988). 
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